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The hiring problem

 Suppose you need to hire a new office assistant: the employment agency
sends you the candidates
 You interview that person – result either to hire or not
 The employment agency gets a small fee for applicant interview
 Actually hiring an applicant is much more costly (to fire the current

office assistant and to pay a hiring fee to the agency)

 Aim: at all times to have the best possible person for the job
 Your decision after interviewing each applicant: is that applicant better

qualified than the current office assistant
 If so, fire the current and hire the new applicant

 Wish: estimation of the price of this strategy
 Assume the candidates are numbered 1 through n

(this scenario – a model for computational paradigms)

Data Structures and Algorithms   (200)



The hiring problem

Hire-Assistant(n)

1   best := 0     // ▻ Candidate 0 is a least-
qualified dummy candidate

2   for i:= 1 to n
3     do interview candidate i
4 if candidate i is better than cand. best
5 then best := i
6 hire candidate i
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The hiring problem

 Cost model here differs from models of previous chapters
 Important is not the running time T(n) of algorithm Hire-Assistant

(H-A), but the costs caused by interviewing and hiring
 The cost of H-A may seem different from T(n) of Merge sort e.g., the

analytical methods, however, are identical whether analyzing cost or
running time: important - always the number of times of basic
operations is estimated

 Be     - the low cost of interviewing  and       - the much higher cost of hiring
 - the number of interviewed people
 - the number of people hired        total cost of algorithm H-A is 

 The cost         is fixed,  but         varies with each run of algorithm H-A: 
therefore concentration on analyzing    
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The hiring problem

 Worst case analysis
 Every candidate is hired that we interview, i.e. the candidates come in

increasing order of quality       we hire    times with
 Total hiring cost of  
 In fact, there is no idea about the order of quality of arrived candidates,

nor do we have any control over this order

 Our interest:  what can we expect to happen in a typical or
average case ??
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The hiring problem

 Probabilistic analysis
 Use of probability in the analysis of problems
 To analyze the running time T(n) of an algorithm or other quantities like

hiring cost of H-A
 Based on probabilistic distribution of the inputs we compute an

average-case running time (taking the average over the distribution of
the possible inputs)

 For hiring problem: assume the applicants come in random order
 We can compare any two candidates an decide which one is ‘better’

ranking with a unique number from 1 to n: rank(i) to mark the rank 
of applicant i

 Convention: a higher rank means a better qualified applicant
 ordered list  [rank(1), rank(2, …, rank(n)] as permutation of the list

(1, 2, …, n)
 Random order of applicants: each of the     permutations is equally

likely the ranks form a uniform random permutation, 
permutations with equal probability
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 For analysing many algorithms – including the hiring problem – we
use so-called Indicator random variables

 Aim: Easy conversion between probabilities and expectations

 Given is a probability space             with event          . Then Indicator
random variable        w.r.t. event is defined: 

 Expl: Expected number of heads when flipping a fair coin

fair coin:

The hiring problem Indicator random variables
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 We define the indicator random variable (r.v.)  

The expected number of heads is simply the expected value of 
indicator variable 

 Lemma: Given a sample space    and an event     in sample space   .
Let                   Then 

[ Proof: By definition of indicator r.v. we get: 
where             denotes event           , the complement of      (the event “not    ”) ]         

Indicator random variables
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 Extended Expl:  Be      - indicator r.v. to event in which the i-th flip
comes up heads:

Let
- r.v. denoting the total number of heads in case of n times

to flip the coin

What is the expected number of heads?  

By linearity of expectation we get:

Indicator random variables
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 Analysis of the hiring problem by indicator random variables

 Aim: computation of the expected number of times that we hire a new
office assistant

Assumption: candidates arrive in a random order

Let     - r.v. to describe the number of times of hiring a new applicant 

Let       - Indicator r.v. with: 

The hiring problem Indicator random variables
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 By Lemma:

,  that means, we compute the 
probability, that lines 5 - 6 of Hire-Assistant algorithm (H-A) 
are executed

 Candidate i is hired in line 5: he is better than each of
candidates              All candidates arrive in random order
any one of these first i candidates is equally likely to be best-
qualified so far

 Candidate has probability       of being better than 1 through   
and thus probability of        of being hired

The hiring problem Indicator random variables
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 By Lemma:

 Resumė:
 Even though we interview  n people, we only actually hire

approximately         of them, on average    

 If candidates come in random order, algorithm Hire-Assistant
has a total hiring cost of 

( The average-case hiring cost is a significant improvement over the
worst-case hiring cost of              )

The hiring problem Indicator random variables
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The hiring problem Randomized algorithms

 Randomized algorithms
 Case: No knowledge of the distribution on the inputs      

average-case analysis is not possible, but randomized algorithms:
 Probability and randomnes as tools for algorithm itself by making the

behavior of part of the algorithm random
 Regarding Hiring problem: independent on any input (-distribution) of

applicants the randomized Hire-Assistant algorithm (r. H-A) impose a
distribution of inputs as

 First action of algorithm: randomly permute the candidates to enforce
the property, that every permutation is equally likely

 For  this algorithm (and other randomized algorithm): no particular input
elicits its worst-case behavior





The hiring problem

Randomized-hire-Assistant(n)

1   Randomly permute the list of candidates 

2   best := 0     // ▻ Candidate 0 is a least-
qualified dummy candidate

3   for i:= 1 to n
4     do interview candidate i
5 if candidate i is better than cand. best
6 then best := i
7 hire candidate i
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The expected hiring cost of Randomized Hire-Assistant is )ln( ncO h 



Probabilistic Analysis & randomized algorithms

 Distinction between probabilistic analysis and
randomized algorithms

 Probabilistic Analysis: probability distribution of the input data
 Mostly, probability analysis to analyze the running time of an algorithm:
 Averaging the running time over all possible inputs
 The algorithm itself is deterministic
 Speech: average-case running time

 Randomized algorithm: randomization in the algorithm, not in input
 no assumption about the input
 Running time: expectation of running time over the distribution of

values   produced  by random-number generator (RANDOM)
 Speech: expected running time



The hiring problem Randomized algorithms

 Random-number generator RANDOM
 RANDOM(a,b) returns an integer between a and  b
 Each integer with equal probability
 Example: RANDOM(0,1) produces both 0 and 1 with probability 1/2

RANDOM(3,7) returns 3,4,5,6 or 7 with with probability 1/5 

 Each integer given by RANDOM is independent of integers returned
on previous calls

 Imagine: RANDOM as rolling of a (b-a+1)-sided die to get its output

 In practice: most programming environments use a pseudorandom-
number generator: a deterministic algorithm returning numbers that “look”
statistically random
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Pseudo code for Randomized Quick Sort 

Quick Sort

Randomized-Quicksort (A,p,r)
if p < r    then

q := Randomized-Partition (A,p,r)
Randomized-Quicksort (A,p,q-1)
Randomized-Quicksort (A,q+1,r)

Randomized-Partition (A,p,r) 
i := Random (p,r)
exchange A[r]         A[i]
return Partition (A,p,r)

 Now: Expected running time  T(n) = Θ(n ⋅ lg n)



Basics of Probability Theory 

 Goal
 recall the basic concepts of probability theory

 Contents
 Randomness and Probability

 Random Variables and their Distributions

 Moments and Quantiles

 Some Distributions

 Dependence of Random Variables

 Why probability theory (and statistics) ?
 often random input in simulation application areas and analytical models

- manufacturing: processing times, machine failure/repair times,... 

- communications: interarrival times of messages, packet sizes,... 

- ... 

 output analysis

- statistical methods for random simulation output 
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Why Probability Theory and Statistics ? 

 Characterization of single random quantities
 random variables

 probability distribution

 expectation, variance, quantiles, ...

 dependence on other random variables

 Simulation and analytical model
 often is a stochastic process

 allows mathematical characterization

 sometimes possible to analyze

 Statistical methods
 to find probability distributions and their parameters (input modeling)

 to generate random numbers/variates during simulation run

(random number generation)

 to analyze simulation output (output analysis)
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Randomness and Probabilities 

 Probability theory
 concerned with the study of random phenomena

 not predictable in a deterministic fashion

 mathematical descriptions to deduce patterns of future outcomes

 Random experiments and their outcomes
 random experiment: a process whose outcome is not known with

certainty (properties: reproducible with same possible outcomes)

 sample space: the set S of all possible outcomes of a random

experiment

 sample point or elementary event: a possible single outcome of a

random experiment, an element of S

 event: a set A of elementary events, a subset of S

 Examples
 toss of a die

 time to failure of a hard disk/machine
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Randomness and Probabilities 

 Intuitive interpretations of probability
 P(A) denotes the probability of an event A

 a measure of how likely a performance of the random experiment

results in an elementary event in A

 relative-frequency interpretation

- repeat the experiment a large number of n times 

- count the number m of occurrences of elementary events in A 

- P(A) ~ m/n 

- experience: the quotient fluctuates less for increasing n 

 interpretation based on equiprobability of elementary events

- if S finite: m = |A|, n = |S|, then P(A) = m/n 

- |·| denotes the cardinality of a set 

 intuitive interpretations sufficient for most engineering applications

- some subtle mathematical difficulties lead to paradoxes with this 

interpretation 

 alternative: axiomatic definition of probability 
Basics of Probability Theory  4 



Randomness and Probabilities 

 Axiomatic definition of probability
 by Kolmogorov 1933

 probabilities, i.e., real numbers, can be assigned to events so as to

satisfy the three basic axioms of probability:

1. for any event A: P(A) ≥ 0

2. P(S) = 1 (the universal event has probability one)

3. P(A  B) = P(A) + P(B), whenever A and B are disjoint,

i.e., when A  B = 

for infinite sample spaces and disjoint events: 

 consistent with our intuition

 axioms of probability allow to derive a number of calculation rules

(together with conventional set theory)

 to avoid mathematical difficulties:

only those events can be considered, which are “measurable” in the

sense of measure theory
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Randomness and Probabilities (cont.) 

 Probability systems (S, , P)
 S sample space

  is a Borel field of subsets of S

-   2S, where power set 2S is the set of all subsets 

- example: S = {x, y, z} 

2S = {, {x}, {y}, {z}, {x,y}, {x,z}, {y,z}, {x,y,z}} 

 = 2S (in this example)  

 P is a probability measure on  satisfying the three axioms of probability

- example: assume all events in S are equiprobable 

P:   [0,1], where 

P() = 0 

P({x}) = P({y}) = P({z}) = 1/3 

P({x,y}) = P({x,z}) = P({y,z}) = 2/3 

P({x,y,z}) = 1 

 we do not need to enter measure theory in more detail
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Randomness and Probabilities 

 Two rules
 P() = 0 (impossible event)

 P(Ā) = P(S\A) = 1-P(A) (complementary event)

 Conditional probability
 P(A|B) = the probability of event A, given that event B has occurred

 important:  P(B) > 0 !

 if A occurs on the condition B, we have the additional information that the

outcome of this random experiment is contained in subset B:

 intuitively: event B plays now the role of the sample space

 P(A|B) = P(A  B)/P(B)
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Randomness and Probabilities 

 Independence
 two events A and B are independent if P(A | B) = P(A)

 intuitively: the relation of the areas of A and S is the same as the

relation of the areas of A  B and B

 

 an equivalent criterion: P(A  B) = P(A)·P(B)
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Random Variables and their Distributions 

 From sample spaces to random variables
 need a more compact representation than the sample space and its

elementary events

 random variable: a function X: S  ℝ+
0, that assigns a real number X(s)

to each possible elementary event or sample point s  S

 the term “random variable” is thus misleading

 convention: capital letters for the random variable and lowercase letters

for their values

 example: rolling a pair of dice

- S = {(1, 1), (1, 2), ..., (6, 6)} 

- (i, j) means that i appeared on the first and j on the second die 

- X( (i, j) ) = i + j 

 example: time to failure of a hard disk

- S = ℝ+
0 

- X(s) = s (here X is just the identity) 
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Random Variables and their Distributions 

 Discrete and continuous random variables (RVs)

 the image of X is X(S), the set of values the random variable can assume

 discrete RV: |X(S)|  |ℕ0 |

- the random variable assumes values from a discrete set of numbers, 

 hence the image is either finite or countable 

- example: rolling a pair of dice (finite image) 

 continuous RV: |X(S)| > | ℕ0 |

- the random variable assumes values from a continuous set of 

 numbers, hence the image is uncountable 

- example: time to failure of a hard disk 

 mixtures of discrete and continuous RVs are possible
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Random Variables and their Distributions 

 Distribution of a discrete RV
 let x1, x2, ... be the discrete values the RV can assume

 pi = P(X = xi) is called the probability mass function (pmf)

 intuitive interpretation: the pmf describes how the probability mass is

distributed over the different values of the RV

 example:

- x1 = 0, x2 = 1, x3 = 2  

- p1 = 0.1, p2 = 0.6, p3 = 0.3 
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Random Variables and their Distributions 

 Distribution of a discrete RV (cont.)

 (cumulative) distribution function (CDF):

 F(x) is a step function jumping with height pi at the discrete values xi of

the RV

 it contains the same information as the pmf

 in the example:
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Random Variables and their Distributions 

 A distribution function F(x) has the following properties

1) 0  F(x)  1

2) F(x) is non-decreasing: if x1  x2 then F(x1)  F(x2)

3)     

4) F(x) is continuous from the right

 any function satisfying these properties is a distribution function
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Random Variables and their Distributions 

 Distribution of a continuous RV
 the probability distribution F(x) = P(X  x) is defined as before

 the probability density function (pdf) is defined as its derivation:

 intuitive interpretation: the pdf describes how the probability is

distributed over the different values of the RV

 example: the uniform distribution from a to b:

Basics of Probability Theory  14 

)x(F
dx

d
)x(f 

x xa b a b

1.0
1 

b - a 

f ( x ) F ( x )










otherwise0

bxa
ab

1
)x(f

















otherwise1

bxa
ab

ax
ax0

)x(F



Random Variables and their Distributions 

 Distribution of a continuous RV (cont.)

 integration of a pdf yields a CDF:

 probability P(c < X  d) of an interval (c, d]:

 example:

 probability P(X = a) of a single value:

 areas under f(x) are probabilities

 f(x) is not a probability!
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Random Variables and their Distributions 

 Distribution of a continuous RV (cont.)
 only the area under the f(x) in the neighborhood [x, x+dx] is a probability

 thus x is more likely in neighborhoods where f(x) is large

Simulation and Modeling I Basics of Probability Theory  16 



Moments and Quantiles 

 Need for a concise description
 the CDF F(x) or the pdf f(x) (pmf pi in the discrete case) completely

characterizes the behavior of a RV

 a function is often too complex

 we need a simpler description: a single number or a few numbers

 Expectation
 the expectation (or mean) m = E[X] of a RV X is defined as

provided the sum or integral converges absolutely 

(otherwise the expectation does not exist) 
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Moments and Quantiles 

 Expectation (cont.)
 intuitive interpretation: a measure of central tendency in the sense that

it is the center of gravity

 example (discrete case)

- x1 = 0, x2 = 1, x3 = 2 

- p1 = 0.1, p2 = 0.6, p3 = 0.3 

- E[X] = 0·0.1 + 1·0.6 + 2·0.3 = 1.2 

 example (continuous case)

-  uniform distribution from a to b 

-
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Moments and Quantiles 

 Expectation (cont.)
 two properties of the expectation operator, needed for other derivations:

- linearity of the expectation: E[aX + bY] = aE[X] + bE[Y] 

- function of a RV: let Y = g(X), then 

( where pX(i) / fX(x) are the pmf / density of RV X ) 

- what about E[X·Y] ? 

   E[X·Y] = E[X]·E[Y] , only if X and Y are independent 

        (for independence of RVs see slide 33) 
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Moments and Quantiles 

 Variance
 the variance s2 = Var[X] of a RV X is defined as Var[X] = E[(X-E[X])2],

provided it exists

 the expectation of the square of the deviation from the mean or the

"second central moment"

 intuitive interpretation: a measure of the dispersion of a RV about its mean;

the larger the variance, the more likely the RV is to take on values far from

its mean

 s is known as the standard deviation

 CX = s/E[X] is the coefficient of variation, a normalized measure
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Moments and Quantiles 

 Variance (cont.)
 with the linearity of the expectation we can derive

 in the discrete example:

Var[X] = 02 ·0.1 + 12 ·0.6 + 22 ·0.3 – 1.22 = 0.36 

 in the uniform example:

 properties of the variance:

- Var[aX] = a2Var[X] 

- Var[X + Y] = Var[X] + Var[Y], if X and Y are uncorrelated 

        (for uncorrelated RVs see slide 34) 
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Moments and Quantiles 

 Moments
 n’th moment is E[Xn], n  1

 n’th central moment is E[(X-E[X])n]

 first moment is the expectation

 second central moment is the variance

 third central moment allows to define the skewness :  = E[(X-E[X])3] / s3

a measure of symmetry

-  = 0 for symmetric distributions as the normal or uniform 

-  < 0 : skewed to the left;  > 0 : skewed to the right  

 fourth central moment allows to define kurtosis :        h = E[(X-E[X])4] / s4 

a measure of the tail weight

- h = 3 for normal distribution 

- h < 3 : platykurtic; h > 3 : leptokurtic (more peaked in center, fatter tails) 

 hard to find interpretations for the higher moments (with larger n)

 a distribution can also be represented by the sequence of its moments

(if they exist)
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Moments and Quantiles 

 Median
 the median is the smallest value x0.5 such that F(x 0.5)  0.5

 an alternative measure of central tendency

 may be better when X can assume extreme values, since they can

greatly affect the mean even if they are unlikely to occur
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Moments and Quantiles 

 Quantile
 for 0 < q < 1, the q-quantile is the smallest value xq such that F(xq)  q

- median for q=0.5: median is 0.5-quantile 

- quartiles for q=0.25 or q=0.75 

- octiles for q=0.125 or q=0.875  

 when X is continuous and F(x) is strictly increasing for 0 < F(x) < 1:

F(xq) = q, xq = F-1(q)

 quantiles also called fractiles or percentiles

 quantiles are not probabilities!

      (found on x-axis) 

 for distribution of discrete RV:

the quantile must also be one

of the discrete values x1, x2, ...

that the RV can assume
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Some Distributions 

 Geometric distribution
 Bernoulli trial

- a random experiment with two possible outcomes: success or failure 

- the probability of success is p 

- example: tossing a die 

success: obtaining a six, failure: the other numbers   p = 1/6 

 new experiment: repeat Bernoulli trials until the first success

 discrete RV X: the number of trials

 pmf: pi = (1-p)i-1 p,  i = 1, 2, ...

 CDF: F(i) = Sj

i

=1pj = Sj

i

=1(1-p)j-1 p = ... = 1- (1-p)i 

 expectation and variance:

- E[X] = Sj=1jpj = p Sj=1j(1-p)j-1 = ... = 1/p
 

- Var[X] = E[(X-E[X])2] = ... = (1-p)/p2 
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Some Distributions 

 Exponential distribution

 pdf:               CDF: 

 

 one parameter: the rate l

 expectation:

 variance:
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Some Distributions 

 The exponential distribution is memoryless
 the memoryless property: P(X  y + z | X > y) = P(X   z)

 interpretation

- let X be the time to failure of a system 

- given the system has not failed until time y, the probability that the 

system fails in the coming z time units, i.e., until time y + z,  

is the same as  

the probability that the system fails until time z starting at time 0 

(thus, the memory y plays no role) 

 proof for the exponential distribution:
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Some Distributions (cont.) 

 Illustration of the memoryless property
 the curve of the exponential distribution function starting at zero with the

corresponding values at y and y + z:
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Some Distributions 

 Illustration of the memoryless property (cont.)
 given that X > y, subtract 1-e-ly and divide by e-ly, the result is the same

curve shifted to the right by y:
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Some Distributions 

 Illustration of the memoryless property (cont.)
 equivalently, scaling the density with the factor e-ly for all values equal to

or greater than y leads to the same curve shifted to the right by y:
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Some Distributions 

 The exponential distribution is memoryless (cont.)
 it can be shown that the exponential distribution is the only continuous

distribution which is memoryless

 analogously, the geometric distribution is the only discrete distribution

which is memoryless

 memoryless property (of exponential distribution) accounts for high

tractability in analysis

 Markovian systems are built from exponential phases:

- phase-type distributions (dense class of probability distributions) 

- Markovian arrival processes (with correlated interarrival times) 

- Continuous-Time Markov Chains (CTMC) 

- Markovian queues 

(more details in Chapter Analytical Modeling ) 
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Some Distributions 

 Normal distribution

 pdf:

 m is the mean

 s2 is the variance

 bell-shape curve

 notation: X ~ N(m, s2)

 F(x) has no closed form

 Z ~ N(0, 1), the standard normal distribution is recorded in tables

 relation:

 P(|x-m| < s) = 0.683, P(|x-m| < 2s) = 0.955, P(|x-m| < 3s) = 0.997

 common for describing measurement errors

 common for quantities that are the sum of a large number of other

quantities, therefore it plays a central role in statistics

(central limit theorem)
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Dependence of Random Variables 

 Joint distribution functions
 Let X and Y be two RVs

 F(x, y) = P(X  x, Y  y) is the joint distribution function

 marginal distribution functions:

 X and Y are independent if F(x, y) = FX(x) FY(y)  for all x,y

 analogous definitions of independence can be given based on the pmf

(in the discrete case) or the pdf (in the continuous case):

p(x, y) = pX(x) pY(y), f(x, y) = fX(x) fY(y) 
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Relationship between Random Variables 

 Measures of dependence between two RVs Xi and Xj

 covariance Cij = E[(Xi-mi)(Xj-mj)] = E[XiXj] – mimj

 if Xi and Xj are independent, Cij = 0, the converse is not true in general

 if Cij > 0, Xi and Xj are positively correlated (Xi > mi and Xj > mj tend to

occur together and Xi < mi and Xj < mj tend to occur together)

 if Cij < 0, Xi and Xj are negatively correlated (Xi > mi and Xj < mj tend to

occur together and Xi < mi and Xj > mj tend to occur together)

 the covariance is not dimensionless, difficult to use, especially for

    comparing degree of dependency 

 correlation

 normalized to values -1   rij    1

 rij  =  0  (then also Cij = 0)    Xi, Xj uncorrelated (but not necessarily independent)

 rij  = ±1    Xi, Xj linearly dependent  

  (i.e., Xj = a Xi +b with a > 0 or a < 0, respectively) 
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