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The hiring problem

B Suppose you need to hire a new office assistant: the employment agency
sends you the candidates

= You interview that person — result either to hire or not
= The employment agency gets a small fee for applicant interview

= Actually hiring an applicant is much more costly (to fire the current
office assistant and to pay a hiring fee to the agency)

B Aim: at all times to have the best possible person for the job

= Your decision after interviewing each applicant: is that applicant better
qualified than the current office assistant

= |f so, fire the current and hire the new applicant

m Wish: estimation of the price of this strategy
= Assume the candidates are numbered 1 through n

(this scenario — a model for computational paradigms)
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The hiring problem

Hire-Assistant(n)

1 best := 0 // > Candidate O 1s a least-
qualified dummy candidate

2 for 1:= 1 to n

3 do interview candidate 1

4 iIT candidate 1 1s better than cand. best

5 then best =1

6 hire candidate 1
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The hiring problem

B Cost model here differs from models of previous chapters

= Important is not the running time T(n) of algorithm Hire-Assistant
(H-A), but the costs caused by interviewing and hiring

= The cost of H-A may seem different from T(n) of Merge sort e.g., the
analytical methods, however, are identical whether analyzing cost or
running time: important - always the number of times of basic

operations is estimated
B Be C - the low cost of interviewing and C, - the much higher cost of hiring
= N - the number of interviewed people
= M - the number of people hired = total cost of algorithm H-Ais
O(cn+c,m)
= The cost C,Nn is fixed, but C,m varies with each run of algorithm H-A:
therefore concentration on analyzing C,m
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The hiring problem

m \Worst case analysis

= Every candidate is hired that we interview, i.e. the candidates come in
increasing order of quality — we hire n times with

= Total hiring cost of O(n-c,)
= |n fact, there is no idea about the order of quality of arrived candidates,
nor do we have any control over this order

m Our interest. what can we expect to happen in a typical or
average case ??



The hiring problem

m Probabilistic analysis
= Use of probability in the analysis of problems

= To analyze the running time T(n) of an algorithm or other quantities like
hiring cost of H-A

= Based on probabilistic distribution of the inputs we compute an
average-case running time (taking the average over the distribution of
the possible inputs)

® For hiring problem: assume the applicants come in random order

= \We can compare any two candidates an decide which one is ‘better’
— ranking with a unique number from 1 to n: rank(i) to mark the rank
of applicant |

= Convention: a higher rank means a better qualified applicant
= = ordered list [rank(1), rank(2, ..., rank(n)] as permutation of the list
(1,2, ...,n)

= Random order of applicants: each of the n!permutations is equally
likely = the ranks form a uniform random permutation,
permutations with equal probability




The hiring problem Indicator random variables

B For analysing many algorithms — including the hiring problem — we
use so-called Indicator random variables

B Aim: Easy conversion between probabilities and expectations

® Given is a probability space (S, ®,P) with event A< ® . Then Indicator
random variable I{A} w.r.t. event A is defined:

I{A}:{l if A occurs

0 if A doesnotoccur

m Expl: Expected number of heads when flipping a fair coin

faircoin:\t 2 S={H,T} with P{H}=P{T}=2
al

Data Structures and Algorithms (205)



Indicator random variables

B We define the indicator random variable (r.v.) X

1 if H
X =HHI=10 5 1

The expected number of heads is simply the expected value of

indicator variable Xy : E[X4]1=E[I{H}]=1-P{H}+0-P{T}=1-5+0-5 =3

B Lemma: Given a sample space S and an event A in sample space S.
Let Xa =1{A}. Then E[X 5]=P{A}.

[ Proof: By definition of indicator r.v. we get: E[X 5] = E[I{A}] =1- P{A}+0- p{ﬂ} = P{A},
where A ¢ ® denotes event S ~ A, the complement of A (the event “not A”) ]
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Indicator random variables

B Extended Expl: Be X; - indicator r.v. to event in which the i-th flip
comes up heads:

X; = I{the i-thflipresultsintheeventH}. Let
X - r.v. denoting the total number of heads in case of n times
to flip the coin x =) x;
i=1

What is the expected number of heads?

n
E[X]=E Z X;]| BY linearity of expectation we get:
i=1

n

E[X]= E{ixi]} S iE[Xi => 1=

n
2
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The hiring problem Indicator random variables

m Analysis of the hiring problem by indicator random variables

m Aim: computation of the expected number of times that we hire a new
office assistant

Assumption: candidates arrive in a random order

Let X - r.v. to describe the number of times of hiring a new applicant
= E[X]=) x-P{X =x}.
x=1

Let X, - Indicator r.v. with:
1 if cand.i ishired
X, = I{candidate i is hired} = _ . _
0 if cand.i isnot hired

= X=X ++X,
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The hiring problem Indicator random variables

® Bylemma:

= E[X,]=P{candidatei is hired}, that means, we compute the
probability, that lines 5 - 6 of Hire-Assistant algorithm (H-A)

are executed

= (Candidate i is hired in line 5: he is better than each of
candidates 1---1 —1. All candidates arrive in random order =

any one of these first i candidates is equally likely to be best-
qualified so far

= Candidate ihas probability 1/i of being better than 1 through i-1
and thus probability of 1/i of being hired
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The hiring problem Indicator random variables

® Bylemma:

E[X.]=1/i =

E[X]= E[Zn: X ]= Zn:E[Xi] - Zn:ui ~Inn+0(Y)

B Resume:
= Even though we interview n people, we only actually hire
approximately Inn of them, on average —

= |f candidates come in random order, algorithm Hire-Assistant
has a total hiring cost of O(c, -Inn)

(= The average-case hiring cost is a significant improvement over the
worst-case hiring cost of O(c, -n))
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The hiring problem Randomized algorithms

B Randomized algorithms

= Case: No knowledge of the distribution on the inputs =
average-case analysis is not possible, but randomized algorithms:

= Probability and randomnes as tools for algorithm itself by making the
behavior of part of the algorithm random

= Regarding Hiring problem: independent on any input (-distribution) of
applicants the randomized Hire-Assistant algorithm (r. H-A) impose a
distribution of inputs as

= First action of algorithm: randomly permute the candidates to enforce
the property, that every permutation is equally likely

m For this algorithm (and other randomized algorithm): no particular input
elicits its worst-case behavior



The hiring problem

Randomized-hire-Assistant(n)

1 Randomly permute the list of candidates

2 best := 0 // > Candidate O 1s a least-
quali1fied dummy candidate

3 for 1:= 1 to n

4 do iInterview candidate 1

5 iIT candidate 1 1s better than cand. best

6 then best = 1

7 hire candidate 1

The expected hiring cost of Randomized Hire-Assistantis O(c, -Inn)
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Probabilistic Analysis & randomized algorithms

m Distinction between probabilistic analysis and
randomized algorithms

= Probabilistic Analysis: probability distribution of the input data

= Mostly, probability analysis to analyze the running time of an algorithm:
= Averaging the running time over all possible inputs

= The algorithm itself is deterministic

= Speech: average-case running time

= Randomized algorithm: randomization in the algorithm, not in input
= no assumption about the input

= Running time: expectation of running time over the distribution of
values produced by random-number generator (RANDOM)

= Speech: expected running time




The hiring problem Randomized algorithms

B Random-number generator RANDOM
= RANDOM(a,b) returns an integer between a and b
= Each integer with equal probability
= Example: RANDOM(0,1) produces both 0 and 1 with probability 1/2
RANDOM(3,7) returns 3,4,5,6 or 7 with with probability 1/5

= Each integer given by RANDOM is independent of integers returned
on previous calls

= Imagine: RANDOM as rolling of a (b-a+1)-sided die to get its output

B In practice: most programming environments use a pseudorandom-
number generator: a deterministic algorithm returning numbers that “look”
statistically random



Quick Sort

Pseudo code for Randomized Quick Sort

Randomized-Quicksort (A,p,r)
ifp<r then
g := Randomized-Partition (A,p,r)
Randomized-Quicksort (A,p,q-1)
Randomized-Quicksort (A,g+1,r)

Randomized-Partition (A,p,r)
| := Random (p,r)
exchange Afr] «— A[j]
return Partition (A,p,r)

" Now: Expected running time T(n) =®(n -lgn)
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Basics of Probability Theory

B Goal
® recall the basic concepts of probability theory

B Contents
® Randomness and Probability
® Random Variables and their Distributions
® Moments and Quantiles
® Some Distributions
® Dependence of Random Variables

B Why probability theory (and statistics) ?
® often random input in simulation application areas and analytical models
- manufacturing: processing times, machine failure/repair times,...
- communications: interarrival times of messages, packet sizes,...

® output analysis
- statistical methods for random simulation output

Basics of Probability Theory 1


klehmet
Hervorheben


Why Probability Theory and Statistics ?

B Characterization of single random quantities
® random variables
® probability distribution
® expectation, variance, quantiles, ...
® dependence on other random variables

B Simulation and analytical model
® often is a stochastic process
® allows mathematical characterization
® sometimes possible to analyze

B Statistical methods

® to find probability distributions and their parameters (input modeling)
® to generate random numbers/variates during simulation run

(random number generation)
® to analyze simulation output (output analysis)
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Randomness and Probabilities

B Probability theory
® concerned with the study of random phenomena
® not predictable in a deterministic fashion
® mathematical descriptions to deduce patterns of future outcomes

B Random experiments and their outcomes

® random experiment: a process whose outcome is not known with
certainty (properties: reproducible with same possible outcomes)

® sample space: the set S of all possible outcomes of a random
experiment

® sample point or elementary event: a possible single outcome of a
random experiment, an element of S

® cvent: a set A of elementary events, a subset of S

B Examples
® toss of a die
® time to failure of a hard disk/machine

Basics of Probability Theory 3



Randomness and Probabilities

B Intuitive interpretations of probability
® P(A) denotes the probability of an event A
® a measure of how likely a performance of the random experiment
results in an elementary event in A

® relative-frequency interpretation
- repeat the experiment a large number of n times
- count the number m of occurrences of elementary events in A
- P(A) ~ m/n
- experience: the quotient fluctuates less for increasing n

® interpretation based on equiprobability of elementary events
- if S finite: m = |A], n = |S], then P(A) = m/n
- || denotes the cardinality of a set

® intuitive interpretations sufficient for most engineering applications
- some subtle mathematical difficulties lead to paradoxes with this

interpretation

= alternative: axiomatic definition of probability
Basics of Probability Theory 4




Randomness and Probabilities

B Axiomatic definition of probability

by Kolmogorov 1933
probabilities, i.e., real numbers, can be assigned to events so as to
satisfy the three basic axioms of probability:
1. for any event A: P(A) >0
2. P(S) = 1 (the universal event has probability one)
3. P(Au B) = P(A) + P(B), whenever A and B are disjoint,
i.e., whenAnB=9 - .
for infinite sample spaces and disjoint events: P(U Anj =Y P(A,)
consistent with our intuition n=t =
axioms of probability allow to derive a number of calculation rules
(together with conventional set theory)
to avoid mathematical difficulties:
only those events can be considered, which are "measurable” in the
sense of measure theory
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Randomness and Probabilities (cont.)

B Probability systems (S, @, P)
® S sample space
® O is a Borel field of subsets of S
- @ c 25, where power set 25 is the set of all subsets
- example: S={xv, z}
2° = {0, {x}, {y}, {z}, iy} {xz}, {y.z}, {xv.2}}
® = 25 (in this example)
® P is a probability measure on @ satisfying the three axioms of probability
- example: assume all events in S are equiprobable
P: ® - [0,1], where
P(®)=0
P{x}) = P({y}) = P({z}) = 1/3
P{X,y}) = P({x,2}) = P({y,z}) = 2/3
P{X,y,2}) = 1
® we do not need to enter measure theory in more detail

Basics of Probability Theory 6



Randomness and Probabilities

m Two rules
® P(Y) = 0 (impossible event)
® P(A) = P(S\A) = 1-P(A) (complementary event)

A °.Jl) Venn diagram

B Conditional probability
® P(A|B) = the probability of event A, given that event B has occurred
® important: P(B) > 0!
® if A occurs on the condition B, we have the additional information that the
outcome of this random experiment is contained in subset B:

@ @» B

intuitively: event B plays now the role of the sample space
® P(A|B) = P(A n B)/P(B)
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Randomness and Probabilities

B Independence
® two events A and B are independent if P(A | B) = P(A)

CL D »>

® intuitively: the relation of the areas of A and S is the same as the
relation of the areas of A~ B and B

Fa > O an ®

® an equivalent criterion: P(A n B) = P(A)'P(B)
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Random Variables and their Distributions

B From sample spaces to random variables
® need a more compact representation than the sample space and its
elementary events
® random variable: a function X: S —» R*,, that assigns a real number X(s)
to each possible elementary event or sample points € S
® the term “random variable” is thus misleading
® convention: capital letters for the random variable and lowercase letters
for their values
® example: rolling a pair of dice
-5={1,1),(@4,?2),..(6,6)}
- (i, j) means that i appeared on the first and j on the second die

- X((@, ) =i+]
® example: time to failure of a hard disk
- S = R"‘O

- X(s) = s (here X is just the identity)
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Random Variables and their Distributions

B Discrete and continuous random variables (RVSs)

® the image of X is X(S), the set of values the random variable can assume

® discrete RV: [X(S)| < |Ng |
- the random variable assumes values from a discrete set of numbers,
hence the image is either finite or countable
- example: rolling a pair of dice (finite image)

® continuous RV: |X(S)| > | Ny |
- the random variable assumes values from a continuous set of
numbers, hence the image is uncountable

- example: time to failure of a hard disk

® mixtures of discrete and continuous RVs are possible
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Random Variables and their Distributions

B Distribution of a discrete RV
® let xy, X,, ... be the discrete values the RV can assume
® p, = P(X = x) is called the probability mass function (pmf)
® intuitive interpretation: the pmf describes how the probability mass is
distributed over the different values of the RV

® example:
A Pi
- X=0,%=1,%x3=2 0.67
- p1=0.1,p,=0.6,p;=0.3 0.3¢
011 | | ‘ -
O 1 2 X
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Random Variables and their Distributions

B Distribution of a discrete RV (cont.)

® (cumulative) distribution function (CDF): F(X)=P(X<x)= >.p

X, <X

® F(x) is a step function jumping with height p; at the discrete values x; of
the RV

® it contains the same information as the pmf

. b F(x)
® in the example:
1.0 ——
0.7 —o
01t &= -
O 1 2 X
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Random Variables and their Distributions

B A distribution function F(x) has the following properties
1) 0<F(x)<1
2) F(x) is non-decreasing: if x, < X, then F(x,) < F(X,)
3) lim F(x) =0, lim F(x)=1

4) F(x) is continuous from the right

® any function satisfying these properties is a distribution function

Basics of Probability Theory 13



Random Variables and their Distributions

B Distribution of a continuous RV
® the probability distribution F(x) = P(X < x) is defined as before
® the probability density function (pdf) is defined as its derivation:

f(x) = dix F(x)

® intuitive interpretation: the pdf describes how the probability is
distributed over the different values of the RV
® example: the uniform distribution from a to b:

1

— <b
f(X)=1b-a 2 <~ A F(x A F(x

0 otherwise fx) F(x)

1.0 ¢
1 ]

())(_a ‘<3 L /—
F(X):<ﬁ a<XSb - . : -

1 otherwise a b X a b X
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Random Variables and their Distributions

B Distribution of a continuous RV (cont.)
® integration of a pdf yields a CDF: ~ F(x)= [f(y)dy

d
® probability P(c < X <d) of an interval (¢, d]:  [f(y)dy =F(d)-F(c)

® example: f(x)

T

cd X
® probability P(X = a) of a single value:  [f(y)dy =F(a)-F(a)=0
® areas under f(x) are probabilities a

® f(x) is not a probability!
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Random Variables and their Distributions

M Distribution of a continuous RV (cont.)
® only the area under the f(x) in the neighborhood [x, x+dx] is a probability

feA
P(X € [x,x + Ax])

pxelall)

i
|
l
|
L
e
[
I
!

X

™/
=Y

® thus x is more likely in neighborhoods where f(x) is large
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Moments and Quantiles

B Need for a concise description
® the CDF F(x) or the pdf f(x) (pmf p; in the discrete case) completely
characterizes the behavior of a RV
® a function is often too complex
® we need a simpler description: a single humber or a few numbers

B Expectation
® the expectation (or mean) u = E[X] of a RV X is defined as

DX, if Xis discrete
E[X] =1
[xf(x)dx if Xis continuous

\\—00

provided the sum or integral converges absolutely
(otherwise the expectation does not exist)
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Moments and Quantiles

B Expectation (cont.)
® intuitive interpretation: a measure of central tendency in the sense that
it is the center of gravity

O example (discrete case)
- X=0,%=1,%x3=2
- p1 0.1, p,=0.6, p;=0.3
- E[X]=00.1+1:0.6 + 2°0.3=1.2

® example (continuous case)
- uniform distribution fromato b

b 2 b

EX) = [ X dx=_ " | =3P
~b-a 2(b—-a) 2
a
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Moments and Quantiles

B Expectation (cont.)
® two properties of the expectation operator, needed for other derivations:

- linearity of the expectation: E[aX + bY] = aE[X] + bE[Y]
- function of a RV: let Y = g(X), then

i a(x,)py(i) if Xisdiscrete
E[Y]=E[g(X)]=1"%

g0t (x)dx if Xis continuous

\—OO

( where py(i) / fy(x) are the pmf / density of RV X )

- what about E[X"Y] ?

E[X'Y] = E[X]'E[Y], only if X and Y are independent
(for independence of RVs see slide 33)
Basics of Probability Theory 19



Moments and Quantiles

B Variance

® the variance o2 = Var[X] of a RV X is defined as Var[X] = E[(X-E[X])?],
provided it exists

® the expectation of the square of the deviation from the mean or the
"second central moment"

® intuitive interpretation: a measure of the dispersion of a RV about its mean;
the larger the variance, the more likely the RV is to take on values far from
its mean

® o is known as the standard deviation

® C, = o/E[X] is the coefficient of variation, a normalized measure
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Moments and Quantiles

B Variance (cont.)
® with the linearity of the expectation we can derive

Var[X] = E[(X — E[X])?] = E[X? — 2XE[X] + E[X]*] = E[X?] - 2E[X]* + E[X]*
= E[X*]-E[X]?
® in the discrete example:

Var[X] =0%2-0.1 + 12:0.6 + 22:0.3-1.22=0.36
® in the uniform example:

b 2 2 5
X a+b b—a
Var[x]=fb_adx—(—2 j _o 12)

® properties of the variance:
- Var[aX] = a?Var[X]
- Var[X + Y] = Var[X] + Var[Y], if X and Y are uncorrelated
(for uncorrelated RVs see slide 34)
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Moments and Quantiles

B Moments

n‘th moment is E[X"], n > 1
n’th central moment is E[(X-E[X])"]
first moment is the expectation
second central moment is the variance
third central moment allows to define the skewness : v = E[(X-E[X])?] / &3
a measure of symmetry

- v = 0 for symmetric distributions as the normal or uniform

- v < 0: skewed to the left; v > 0 : skewed to the right
fourth central moment allows to define kurtosis : n = E[(X-E[X])?*] / o*
a measure of the tail weight

- n = 3 for normal distribution

- n < 3 : platykurtic; n > 3 : leptokurtic (more peaked in center, fatter tails)
hard to find interpretations for the higher moments (with larger n)
a distribution can also be represented by the sequence of its moments
(if they exist)
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Moments and Quantiles

B Median
® the median is the smallest value X, s such that F(x 55) > 0.5
® an alternative measure of central tendency
® may be better when X can assume extreme values, since they can
greatly affect the mean even if they are unlikely to occur

fy (A

Shaded area = 0.5

" ¥
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Moments and Quantiles

B Quantile

® for 0 < g < 1, the g-quantile is the smallest value x, such that F(x,) > g
- median for g=0.5: median is 0.5-quantile
- quartiles for g=0.25 or g=0.75
- octiles for g=0.125 or g=0.875
® when X is continuous and F(x) is strictly increasing for 0 < F(x) < 1:
F(x,) = a, X, = F(q)
® quantiles also called fractiles or percentiles
® quantiles are not probabilities! 1 (x)
(found on x-axis)
® for distribution of discrete RV:
the quantile must also be one
of the discrete values x;, X,, ...
that the RV can assume

)

/9885959 ,

X0.95 X
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Some Distributions

B Geometric distribution
® Bernoulli trial
- a random experiment with two possible outcomes: success or failure
- the probability of success is p
- example: tossing a die
success: obtaining a six, failure: the other numbers > p = 1/6
® new experiment: repeat Bernoulli trials until the first success
® discrete RV X: the number of trials
® pmf: p, = (1-p)-p, i=1,2, ..

ol

® CDF: F(i) = 3,_p, = 5_,(1-p)ip = ... = 1- (1-p) °
® expectation and variance: '
CEXI=Ep = pEApi=.=Up |
- Var[X] = E[(X-E[X])’] = ... = (1-p)/p? oL L1 T [lyich 8

Basics of Probability Theory 25



Some Distributions

B Exponential distribution

(4 4—AX > A AX >
® pdf: f(x):<7Me x20 CDF: F(x) = 1-e x=0
0 Xx<0 0 Xx<0
f(x) F(x)
A 1 -
X
® one parameter: the rate A
® expectation:  E[X]= [xhe™dx =--- =1/
0
® variance:  Var[X]= [(x—-1/1)*Ae ™ dx = =1/2°
0
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Some Distributions

B The exponential distribution is memoryless
® the memoryless property: PX<y +z | X>y)=P(X< 2)
® interpretation
- let X be the time to failure of a system
- given the system has not failed until time y, the probability that the
system fails in the coming z time units, i.e., until time y + z,
is the same as
the probability that the system fails until time z starting at time 0
(thus, the memory y plays no role)
® proof for the exponential distribution:

def. of conditional probability

|

P(XSerzlX>y):P(y<X§y+z):F(erz)—F(y)

P(X>Yy) 1-F(y)

1-e0 ) _(1-e™)
= e—ky

=l-e” =P(X<2)
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Some Distributions (cont.)

B [llustration of the memoryless property

® the curve of the exponential distribution function starting at zero with the
corresponding values aty and y + z:

A

F(x)]

1 —

1-e-My+2)

1-ey

v

Y Y*Z X
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Some Distributions

B [llustration of the memoryless property (cont.)

® given that X > vy, subtract 1-eY and divide by e, the result is the same
curve shifted to the right by y:

F(x) A
1
1-e-My*2) yiz)
1-e V) _(1—e™ .
1-e»y —xy( ) —1-e
| Y 4 \ W e
- leV-(1-e)_,
e -
y y+z X
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Some Distributions

B [llustration of the memoryless property (cont.)

® equivalently, scaling the density with the factor e for all values equal to
or greater than y leads to the same curve shifted to the right by y:

A _Ky
f(x) e o
e y
A

re Y

LeMy+z)

Y Y+z X
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Some Distributions

B The exponential distribution is memoryless (cont.)
® it can be shown that the exponential distribution is the only continuous
distribution which is memoryless

® analogously, the geometric distribution is the only discrete distribution
which is memoryless

® memoryless property (of exponential distribution) accounts for high
tractability in analysis
® Markovian systems are built from exponential phases:
- phase-type distributions (dense class of probability distributions)
- Markovian arrival processes (with correlated interarrival times)
- Continuous-Time Markov Chains (CTMC)
- Markovian queues
(more details in Chapter Analytical Modeling )
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Some Distributions

o _ 0.4
B Normal distribution
1 Xx—p 2
1 5% 03
df: f(x) = e 2\ °
p () e
u is the mean 0.2
c? is the variance
0.1
bell-shape curve
notation: X ~ N(u, 2) _
F(x) has no closed form U=3G 26 p—G P WG P20 p+3c X
Z ~ N(0, 1), the standard normal distribution is recorded in tables
relation:  Fy(x) =F, ("
P(|x-u| < o) = 0.683, P(|x-u| < 26) = 0.955, P(|x-u| < 3c) = 0.997
common for describing measurement errors
common for quantities that are the sum of a large number of other

quantities, therefore it plays a central role in statistics
(central limit theorem)
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Dependence of Random Variables

B Joint distribution functions

® Let X and Y be two RVs
® F(x,y) =P(X<Xx,Y<Yy)is the joint distribution function
® marginal distribution functions:

lim F(x,y) =F/(y), limF(x,y)=F(X)
X—>00 Y—0
® X and Y are independent if F(x, y) = F(x) Fy(y) for all x,y

® analogous definitions of independence can be given based on the pmf
(in the discrete case) or the pdf (in the continuous case):

P(X, ¥) = px(X) py(Y), f(x, y) = fu(x) fy(y)
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Relationship between Random Variables

B Measures of dependence between two RVs X; and X;

covariance G; = E[(X-m)(X ;)] = EIXX] — i

if X; and X; are independent, C; = 0, the converse is not true in general

if C; > 0, X; and X; are positively correlated (X; > p; and X; > p, tend to
occur together and X; < w; and X; < y; tend to occur together)

if C; < 0, X; and X; are negatively correlated (X; > p; and X; < p; tend to
occur together and X; < w; and X; > ; tend to occur together)

the covariance is not dimensionless, difficult to use, especially for

c, comparing degree of dependency
2 2

Gj O]

correlation p; =

normalized to values -1 < p; < 1
— P T 0 (then also Cij = O) = Xi, Xj uncorrelated (but not necessarily independent)
- py =11 = X, X linearly dependent
(i.e., X;=a X; +b with a > 0 or a < 0, respectively)
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