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The hiring problem

 Suppose you need to hire a new office assistant: the employment agency
sends you the candidates
 You interview that person – result either to hire or not
 The employment agency gets a small fee for applicant interview
 Actually hiring an applicant is much more costly (to fire the current

office assistant and to pay a hiring fee to the agency)

 Aim: at all times to have the best possible person for the job
 Your decision after interviewing each applicant: is that applicant better

qualified than the current office assistant
 If so, fire the current and hire the new applicant

 Wish: estimation of the price of this strategy
 Assume the candidates are numbered 1 through n

(this scenario – a model for computational paradigms)
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The hiring problem

Hire-Assistant(n)

1   best := 0     // ▻ Candidate 0 is a least-
qualified dummy candidate

2   for i:= 1 to n
3     do interview candidate i
4 if candidate i is better than cand. best
5 then best := i
6 hire candidate i
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The hiring problem

 Cost model here differs from models of previous chapters
 Important is not the running time T(n) of algorithm Hire-Assistant

(H-A), but the costs caused by interviewing and hiring
 The cost of H-A may seem different from T(n) of Merge sort e.g., the

analytical methods, however, are identical whether analyzing cost or
running time: important - always the number of times of basic
operations is estimated

 Be     - the low cost of interviewing  and       - the much higher cost of hiring
 - the number of interviewed people
 - the number of people hired        total cost of algorithm H-A is 

 The cost         is fixed,  but         varies with each run of algorithm H-A: 
therefore concentration on analyzing    
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The hiring problem

 Worst case analysis
 Every candidate is hired that we interview, i.e. the candidates come in

increasing order of quality       we hire    times with
 Total hiring cost of  
 In fact, there is no idea about the order of quality of arrived candidates,

nor do we have any control over this order

 Our interest:  what can we expect to happen in a typical or
average case ??
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The hiring problem

 Probabilistic analysis
 Use of probability in the analysis of problems
 To analyze the running time T(n) of an algorithm or other quantities like

hiring cost of H-A
 Based on probabilistic distribution of the inputs we compute an

average-case running time (taking the average over the distribution of
the possible inputs)

 For hiring problem: assume the applicants come in random order
 We can compare any two candidates an decide which one is ‘better’

ranking with a unique number from 1 to n: rank(i) to mark the rank 
of applicant i

 Convention: a higher rank means a better qualified applicant
 ordered list  [rank(1), rank(2, …, rank(n)] as permutation of the list

(1, 2, …, n)
 Random order of applicants: each of the     permutations is equally

likely the ranks form a uniform random permutation, 
permutations with equal probability
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 For analysing many algorithms – including the hiring problem – we
use so-called Indicator random variables

 Aim: Easy conversion between probabilities and expectations

 Given is a probability space             with event          . Then Indicator
random variable        w.r.t. event is defined: 

 Expl: Expected number of heads when flipping a fair coin

fair coin:

The hiring problem Indicator random variables
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 We define the indicator random variable (r.v.)  

The expected number of heads is simply the expected value of 
indicator variable 

 Lemma: Given a sample space    and an event     in sample space   .
Let                   Then 

[ Proof: By definition of indicator r.v. we get: 
where             denotes event           , the complement of      (the event “not    ”) ]         

Indicator random variables
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 Extended Expl:  Be      - indicator r.v. to event in which the i-th flip
comes up heads:

Let
- r.v. denoting the total number of heads in case of n times

to flip the coin

What is the expected number of heads?  

By linearity of expectation we get:

Indicator random variables
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 Analysis of the hiring problem by indicator random variables

 Aim: computation of the expected number of times that we hire a new
office assistant

Assumption: candidates arrive in a random order

Let     - r.v. to describe the number of times of hiring a new applicant 

Let       - Indicator r.v. with: 

The hiring problem Indicator random variables
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 By Lemma:

,  that means, we compute the 
probability, that lines 5 - 6 of Hire-Assistant algorithm (H-A) 
are executed

 Candidate i is hired in line 5: he is better than each of
candidates              All candidates arrive in random order
any one of these first i candidates is equally likely to be best-
qualified so far

 Candidate has probability       of being better than 1 through   
and thus probability of        of being hired

The hiring problem Indicator random variables
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 By Lemma:

 Resumė:
 Even though we interview  n people, we only actually hire

approximately         of them, on average    

 If candidates come in random order, algorithm Hire-Assistant
has a total hiring cost of 

( The average-case hiring cost is a significant improvement over the
worst-case hiring cost of              )

The hiring problem Indicator random variables
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The hiring problem Randomized algorithms

 Randomized algorithms
 Case: No knowledge of the distribution on the inputs      

average-case analysis is not possible, but randomized algorithms:
 Probability and randomnes as tools for algorithm itself by making the

behavior of part of the algorithm random
 Regarding Hiring problem: independent on any input (-distribution) of

applicants the randomized Hire-Assistant algorithm (r. H-A) impose a
distribution of inputs as

 First action of algorithm: randomly permute the candidates to enforce
the property, that every permutation is equally likely

 For  this algorithm (and other randomized algorithm): no particular input
elicits its worst-case behavior





The hiring problem

Randomized-hire-Assistant(n)

1   Randomly permute the list of candidates 

2   best := 0     // ▻ Candidate 0 is a least-
qualified dummy candidate

3   for i:= 1 to n
4     do interview candidate i
5 if candidate i is better than cand. best
6 then best := i
7 hire candidate i
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Probabilistic Analysis & randomized algorithms

 Distinction between probabilistic analysis and
randomized algorithms

 Probabilistic Analysis: probability distribution of the input data
 Mostly, probability analysis to analyze the running time of an algorithm:
 Averaging the running time over all possible inputs
 The algorithm itself is deterministic
 Speech: average-case running time

 Randomized algorithm: randomization in the algorithm, not in input
 no assumption about the input
 Running time: expectation of running time over the distribution of

values   produced  by random-number generator (RANDOM)
 Speech: expected running time



The hiring problem Randomized algorithms

 Random-number generator RANDOM
 RANDOM(a,b) returns an integer between a and  b
 Each integer with equal probability
 Example: RANDOM(0,1) produces both 0 and 1 with probability 1/2

RANDOM(3,7) returns 3,4,5,6 or 7 with with probability 1/5 

 Each integer given by RANDOM is independent of integers returned
on previous calls

 Imagine: RANDOM as rolling of a (b-a+1)-sided die to get its output

 In practice: most programming environments use a pseudorandom-
number generator: a deterministic algorithm returning numbers that “look”
statistically random
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Pseudo code for Randomized Quick Sort 

Quick Sort

Randomized-Quicksort (A,p,r)
if p < r    then

q := Randomized-Partition (A,p,r)
Randomized-Quicksort (A,p,q-1)
Randomized-Quicksort (A,q+1,r)

Randomized-Partition (A,p,r) 
i := Random (p,r)
exchange A[r]         A[i]
return Partition (A,p,r)

 Now: Expected running time  T(n) = Θ(n ⋅ lg n)



Basics of Probability Theory 

 Goal
 recall the basic concepts of probability theory

 Contents
 Randomness and Probability

 Random Variables and their Distributions

 Moments and Quantiles

 Some Distributions

 Dependence of Random Variables

 Why probability theory (and statistics) ?
 often random input in simulation application areas and analytical models

- manufacturing: processing times, machine failure/repair times,... 

- communications: interarrival times of messages, packet sizes,... 

- ... 

 output analysis

- statistical methods for random simulation output 
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Why Probability Theory and Statistics ? 

 Characterization of single random quantities
 random variables

 probability distribution

 expectation, variance, quantiles, ...

 dependence on other random variables

 Simulation and analytical model
 often is a stochastic process

 allows mathematical characterization

 sometimes possible to analyze

 Statistical methods
 to find probability distributions and their parameters (input modeling)

 to generate random numbers/variates during simulation run

(random number generation)

 to analyze simulation output (output analysis)
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Randomness and Probabilities 

 Probability theory
 concerned with the study of random phenomena

 not predictable in a deterministic fashion

 mathematical descriptions to deduce patterns of future outcomes

 Random experiments and their outcomes
 random experiment: a process whose outcome is not known with

certainty (properties: reproducible with same possible outcomes)

 sample space: the set S of all possible outcomes of a random

experiment

 sample point or elementary event: a possible single outcome of a

random experiment, an element of S

 event: a set A of elementary events, a subset of S

 Examples
 toss of a die

 time to failure of a hard disk/machine
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Randomness and Probabilities 

 Intuitive interpretations of probability
 P(A) denotes the probability of an event A

 a measure of how likely a performance of the random experiment

results in an elementary event in A

 relative-frequency interpretation

- repeat the experiment a large number of n times 

- count the number m of occurrences of elementary events in A 

- P(A) ~ m/n 

- experience: the quotient fluctuates less for increasing n 

 interpretation based on equiprobability of elementary events

- if S finite: m = |A|, n = |S|, then P(A) = m/n 

- |·| denotes the cardinality of a set 

 intuitive interpretations sufficient for most engineering applications

- some subtle mathematical difficulties lead to paradoxes with this 

interpretation 

 alternative: axiomatic definition of probability 
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Randomness and Probabilities 

 Axiomatic definition of probability
 by Kolmogorov 1933

 probabilities, i.e., real numbers, can be assigned to events so as to

satisfy the three basic axioms of probability:

1. for any event A: P(A) ≥ 0

2. P(S) = 1 (the universal event has probability one)

3. P(A  B) = P(A) + P(B), whenever A and B are disjoint,

i.e., when A  B = 

for infinite sample spaces and disjoint events: 

 consistent with our intuition

 axioms of probability allow to derive a number of calculation rules

(together with conventional set theory)

 to avoid mathematical difficulties:

only those events can be considered, which are “measurable” in the

sense of measure theory

Basics of Probability Theory  5 

 

















1n
nn

1n

APAP 



Randomness and Probabilities (cont.) 

 Probability systems (S, , P)
 S sample space

  is a Borel field of subsets of S

-   2S, where power set 2S is the set of all subsets 

- example: S = {x, y, z} 

2S = {, {x}, {y}, {z}, {x,y}, {x,z}, {y,z}, {x,y,z}} 

 = 2S (in this example)  

 P is a probability measure on  satisfying the three axioms of probability

- example: assume all events in S are equiprobable 

P:   [0,1], where 

P() = 0 

P({x}) = P({y}) = P({z}) = 1/3 

P({x,y}) = P({x,z}) = P({y,z}) = 2/3 

P({x,y,z}) = 1 

 we do not need to enter measure theory in more detail
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Randomness and Probabilities 

 Two rules
 P() = 0 (impossible event)

 P(Ā) = P(S\A) = 1-P(A) (complementary event)

 Conditional probability
 P(A|B) = the probability of event A, given that event B has occurred

 important:  P(B) > 0 !

 if A occurs on the condition B, we have the additional information that the

outcome of this random experiment is contained in subset B:

 intuitively: event B plays now the role of the sample space

 P(A|B) = P(A  B)/P(B)
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Randomness and Probabilities 

 Independence
 two events A and B are independent if P(A | B) = P(A)

 intuitively: the relation of the areas of A and S is the same as the

relation of the areas of A  B and B

 

 an equivalent criterion: P(A  B) = P(A)·P(B)
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Random Variables and their Distributions 

 From sample spaces to random variables
 need a more compact representation than the sample space and its

elementary events

 random variable: a function X: S  ℝ+
0, that assigns a real number X(s)

to each possible elementary event or sample point s  S

 the term “random variable” is thus misleading

 convention: capital letters for the random variable and lowercase letters

for their values

 example: rolling a pair of dice

- S = {(1, 1), (1, 2), ..., (6, 6)} 

- (i, j) means that i appeared on the first and j on the second die 

- X( (i, j) ) = i + j 

 example: time to failure of a hard disk

- S = ℝ+
0 

- X(s) = s (here X is just the identity) 

Basics of Probability Theory  9 



Random Variables and their Distributions 

 Discrete and continuous random variables (RVs)

 the image of X is X(S), the set of values the random variable can assume

 discrete RV: |X(S)|  |ℕ0 |

- the random variable assumes values from a discrete set of numbers, 

 hence the image is either finite or countable 

- example: rolling a pair of dice (finite image) 

 continuous RV: |X(S)| > | ℕ0 |

- the random variable assumes values from a continuous set of 

 numbers, hence the image is uncountable 

- example: time to failure of a hard disk 

 mixtures of discrete and continuous RVs are possible
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Random Variables and their Distributions 

 Distribution of a discrete RV
 let x1, x2, ... be the discrete values the RV can assume

 pi = P(X = xi) is called the probability mass function (pmf)

 intuitive interpretation: the pmf describes how the probability mass is

distributed over the different values of the RV

 example:

- x1 = 0, x2 = 1, x3 = 2  

- p1 = 0.1, p2 = 0.6, p3 = 0.3 
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Random Variables and their Distributions 

 Distribution of a discrete RV (cont.)

 (cumulative) distribution function (CDF):

 F(x) is a step function jumping with height pi at the discrete values xi of

the RV

 it contains the same information as the pmf

 in the example:
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Random Variables and their Distributions 

 A distribution function F(x) has the following properties

1) 0  F(x)  1

2) F(x) is non-decreasing: if x1  x2 then F(x1)  F(x2)

3)     

4) F(x) is continuous from the right

 any function satisfying these properties is a distribution function
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Random Variables and their Distributions 

 Distribution of a continuous RV
 the probability distribution F(x) = P(X  x) is defined as before

 the probability density function (pdf) is defined as its derivation:

 intuitive interpretation: the pdf describes how the probability is

distributed over the different values of the RV

 example: the uniform distribution from a to b:
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Random Variables and their Distributions 

 Distribution of a continuous RV (cont.)

 integration of a pdf yields a CDF:

 probability P(c < X  d) of an interval (c, d]:

 example:

 probability P(X = a) of a single value:

 areas under f(x) are probabilities

 f(x) is not a probability!

Basics of Probability Theory  15 





x

dy)y(f)x(F

)c(F)d(Fdy)y(f
d

c



0)a(F)a(Fdy)y(f
a

a



xc d

f ( x )



Random Variables and their Distributions 

 Distribution of a continuous RV (cont.)
 only the area under the f(x) in the neighborhood [x, x+dx] is a probability

 thus x is more likely in neighborhoods where f(x) is large
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Moments and Quantiles 

 Need for a concise description
 the CDF F(x) or the pdf f(x) (pmf pi in the discrete case) completely

characterizes the behavior of a RV

 a function is often too complex

 we need a simpler description: a single number or a few numbers

 Expectation
 the expectation (or mean) m = E[X] of a RV X is defined as

provided the sum or integral converges absolutely 

(otherwise the expectation does not exist) 
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Moments and Quantiles 

 Expectation (cont.)
 intuitive interpretation: a measure of central tendency in the sense that

it is the center of gravity

 example (discrete case)

- x1 = 0, x2 = 1, x3 = 2 

- p1 = 0.1, p2 = 0.6, p3 = 0.3 

- E[X] = 0·0.1 + 1·0.6 + 2·0.3 = 1.2 

 example (continuous case)

-  uniform distribution from a to b 

-
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Moments and Quantiles 

 Expectation (cont.)
 two properties of the expectation operator, needed for other derivations:

- linearity of the expectation: E[aX + bY] = aE[X] + bE[Y] 

- function of a RV: let Y = g(X), then 

( where pX(i) / fX(x) are the pmf / density of RV X ) 

- what about E[X·Y] ? 

   E[X·Y] = E[X]·E[Y] , only if X and Y are independent 

        (for independence of RVs see slide 33) 
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Moments and Quantiles 

 Variance
 the variance s2 = Var[X] of a RV X is defined as Var[X] = E[(X-E[X])2],

provided it exists

 the expectation of the square of the deviation from the mean or the

"second central moment"

 intuitive interpretation: a measure of the dispersion of a RV about its mean;

the larger the variance, the more likely the RV is to take on values far from

its mean

 s is known as the standard deviation

 CX = s/E[X] is the coefficient of variation, a normalized measure
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Moments and Quantiles 

 Variance (cont.)
 with the linearity of the expectation we can derive

 in the discrete example:

Var[X] = 02 ·0.1 + 12 ·0.6 + 22 ·0.3 – 1.22 = 0.36 

 in the uniform example:

 properties of the variance:

- Var[aX] = a2Var[X] 

- Var[X + Y] = Var[X] + Var[Y], if X and Y are uncorrelated 

        (for uncorrelated RVs see slide 34) 
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Moments and Quantiles 

 Moments
 n’th moment is E[Xn], n  1

 n’th central moment is E[(X-E[X])n]

 first moment is the expectation

 second central moment is the variance

 third central moment allows to define the skewness :  = E[(X-E[X])3] / s3

a measure of symmetry

-  = 0 for symmetric distributions as the normal or uniform 

-  < 0 : skewed to the left;  > 0 : skewed to the right  

 fourth central moment allows to define kurtosis :        h = E[(X-E[X])4] / s4 

a measure of the tail weight

- h = 3 for normal distribution 

- h < 3 : platykurtic; h > 3 : leptokurtic (more peaked in center, fatter tails) 

 hard to find interpretations for the higher moments (with larger n)

 a distribution can also be represented by the sequence of its moments

(if they exist)
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Moments and Quantiles 

 Median
 the median is the smallest value x0.5 such that F(x 0.5)  0.5

 an alternative measure of central tendency

 may be better when X can assume extreme values, since they can

greatly affect the mean even if they are unlikely to occur
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Moments and Quantiles 

 Quantile
 for 0 < q < 1, the q-quantile is the smallest value xq such that F(xq)  q

- median for q=0.5: median is 0.5-quantile 

- quartiles for q=0.25 or q=0.75 

- octiles for q=0.125 or q=0.875  

 when X is continuous and F(x) is strictly increasing for 0 < F(x) < 1:

F(xq) = q, xq = F-1(q)

 quantiles also called fractiles or percentiles

 quantiles are not probabilities!

      (found on x-axis) 

 for distribution of discrete RV:

the quantile must also be one

of the discrete values x1, x2, ...

that the RV can assume
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Some Distributions 

 Geometric distribution
 Bernoulli trial

- a random experiment with two possible outcomes: success or failure 

- the probability of success is p 

- example: tossing a die 

success: obtaining a six, failure: the other numbers   p = 1/6 

 new experiment: repeat Bernoulli trials until the first success

 discrete RV X: the number of trials

 pmf: pi = (1-p)i-1 p,  i = 1, 2, ...

 CDF: F(i) = Sj

i

=1pj = Sj

i

=1(1-p)j-1 p = ... = 1- (1-p)i 

 expectation and variance:

- E[X] = Sj=1jpj = p Sj=1j(1-p)j-1 = ... = 1/p
 

- Var[X] = E[(X-E[X])2] = ... = (1-p)/p2 
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Some Distributions 

 Exponential distribution

 pdf:               CDF: 

 

 one parameter: the rate l

 expectation:

 variance:
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Some Distributions 

 The exponential distribution is memoryless
 the memoryless property: P(X  y + z | X > y) = P(X   z)

 interpretation

- let X be the time to failure of a system 

- given the system has not failed until time y, the probability that the 

system fails in the coming z time units, i.e., until time y + z,  

is the same as  

the probability that the system fails until time z starting at time 0 

(thus, the memory y plays no role) 

 proof for the exponential distribution:
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Some Distributions (cont.) 

 Illustration of the memoryless property
 the curve of the exponential distribution function starting at zero with the

corresponding values at y and y + z:
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Some Distributions 

 Illustration of the memoryless property (cont.)
 given that X > y, subtract 1-e-ly and divide by e-ly, the result is the same

curve shifted to the right by y:
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Some Distributions 

 Illustration of the memoryless property (cont.)
 equivalently, scaling the density with the factor e-ly for all values equal to

or greater than y leads to the same curve shifted to the right by y:
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Some Distributions 

 The exponential distribution is memoryless (cont.)
 it can be shown that the exponential distribution is the only continuous

distribution which is memoryless

 analogously, the geometric distribution is the only discrete distribution

which is memoryless

 memoryless property (of exponential distribution) accounts for high

tractability in analysis

 Markovian systems are built from exponential phases:

- phase-type distributions (dense class of probability distributions) 

- Markovian arrival processes (with correlated interarrival times) 

- Continuous-Time Markov Chains (CTMC) 

- Markovian queues 

(more details in Chapter Analytical Modeling ) 
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Some Distributions 

 Normal distribution

 pdf:

 m is the mean

 s2 is the variance

 bell-shape curve

 notation: X ~ N(m, s2)

 F(x) has no closed form

 Z ~ N(0, 1), the standard normal distribution is recorded in tables

 relation:

 P(|x-m| < s) = 0.683, P(|x-m| < 2s) = 0.955, P(|x-m| < 3s) = 0.997

 common for describing measurement errors

 common for quantities that are the sum of a large number of other

quantities, therefore it plays a central role in statistics

(central limit theorem)
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Dependence of Random Variables 

 Joint distribution functions
 Let X and Y be two RVs

 F(x, y) = P(X  x, Y  y) is the joint distribution function

 marginal distribution functions:

 X and Y are independent if F(x, y) = FX(x) FY(y)  for all x,y

 analogous definitions of independence can be given based on the pmf

(in the discrete case) or the pdf (in the continuous case):

p(x, y) = pX(x) pY(y), f(x, y) = fX(x) fY(y) 
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Relationship between Random Variables 

 Measures of dependence between two RVs Xi and Xj

 covariance Cij = E[(Xi-mi)(Xj-mj)] = E[XiXj] – mimj

 if Xi and Xj are independent, Cij = 0, the converse is not true in general

 if Cij > 0, Xi and Xj are positively correlated (Xi > mi and Xj > mj tend to

occur together and Xi < mi and Xj < mj tend to occur together)

 if Cij < 0, Xi and Xj are negatively correlated (Xi > mi and Xj < mj tend to

occur together and Xi < mi and Xj > mj tend to occur together)

 the covariance is not dimensionless, difficult to use, especially for

    comparing degree of dependency 

 correlation

 normalized to values -1   rij    1

 rij  =  0  (then also Cij = 0)    Xi, Xj uncorrelated (but not necessarily independent)

 rij  = ±1    Xi, Xj linearly dependent  

  (i.e., Xj = a Xi +b with a > 0 or a < 0, respectively) 
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