Introduction to

Data Structures and Algorithms

Chapter: Probabilistic Analysis \& Randomized

Algorithms

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Lehrstuhl Informatik 7 (Prof. Dr. -Ing. Reinhard German) Martensstraße 3, 91058 Erlangen

The hiring problem

■ Suppose you need to hire a new office assistant: the employment agency sends you the candidates

- You interview that person - result either to hire or not
- The employment agency gets a small fee for applicant interview
- Actually hiring an applicant is much more costly (to fire the current office assistant and to pay a hiring fee to the agency)
- Aim: at all times to have the best possible person for the job
- Your decision after interviewing each applicant: is that applicant better qualified than the current office assistant
- If so, fire the current and hire the new applicant
- Wish: estimation of the price of this strategy
- Assume the candidates are numbered 1 through n
(this scenario - a model for computational paradigms)

The hiring problem

```
Hire-Assistant(n)
1 best := 0 // \triangleright Candidate 0 is a least-
                                    qualified dummy candidate
2 for i:= 1 to n
3 do interview candidate i
4 if candidate i is better than cand. best
        then best := i
            hire candidate i
```


The hiring problem

- Cost model here differs from models of previous chapters
- Important is not the running time $\mathrm{T}(\mathrm{n})$ of algorithm Hire-Assistant ($\mathrm{H}-\mathrm{A}$), but the costs caused by interviewing and hiring
- The cost of H-A may seem different from T(n) of Merge sort e.g., the analytical methods, however, are identical whether analyzing cost or running time: important - always the number of times of basic operations is estimated
- Be c_{i} - the low cost of interviewing and c_{h} - the much higher cost of hiring
- n - the number of interviewed people
- m - the number of people hired \Rightarrow total cost of algorithm $\mathrm{H}-\mathrm{A}$ is $O\left(c_{i} n+c_{h} m\right)$
- The cost $c_{i} n$ is fixed, but $c_{h} m$ varies with each run of algorithm H-A: therefore concentration on analyzing $c_{h} m$

The hiring problem

- Worst case analysis
- Every candidate is hired that we interview, i.e. the candidates come in increasing order of quality \Rightarrow we hire n times with
- Total hiring cost of $O\left(n \cdot c_{h}\right)$
- In fact, there is no idea about the order of quality of arrived candidates, nor do we have any control over this order
- Our interest: what can we expect to happen in a typical or average case ??

The hiring problem

- Probabilistic analysis
- Use of probability in the analysis of problems
- To analyze the running time $T(n)$ of an algorithm or other quantities like hiring cost of $\mathrm{H}-\mathrm{A}$
- Based on probabilistic distribution of the inputs we compute an average-case running time (taking the average over the distribution of the possible inputs)
- For hiring problem: assume the applicants come in random order
- We can compare any two candidates an decide which one is 'better' \Rightarrow ranking with a unique number from 1 to n : rank(i) to mark the rank of applicant i
- Convention: a higher rank means a better qualified applicant
- \Rightarrow ordered list $[\operatorname{rank}(1), \operatorname{rank}(2, \ldots, \operatorname{rank}(n)]$ as permutation of the list (1, 2, ... n)
- Random order of applicants: each of the n ! permutations is equally likely \Rightarrow the ranks form a uniform random permutation, permutations with equal probability

The hiring problem

- For analysing many algorithms - including the hiring problem - we use so-called Indicator random variables
- Aim: Easy conversion between probabilities and expectations
- Given is a probability space (S, Φ, P) with event $A \in \Phi$. Then Indicator random variable $I\{A\}$ w.r.t. event A is defined:
$I\{A\}=\left\{\begin{array}{lll}1 & \text { if } & \text { A occurs } \\ 0 & \text { if } & \text { A does not occur }\end{array}\right.$

■ Expl: Expected number of heads when flipping a fair coin
fair coin: $\int_{\text {tail } \mathrm{T}}^{\text {head } \mathrm{H}} \Rightarrow S=\{H, T\}$ with $\mathrm{P}\{H\}=\mathrm{P}\{T\}=\frac{1}{2}$

Indicator random variables

- We define the indicator random variable (r.v.) X_{H}

$$
X_{H}=I\{H\}=\left\{\begin{array}{lll}
1 & \text { if } & \mathrm{H} \\
0 & \text { if } & \mathrm{T}
\end{array} \quad \Rightarrow\right.
$$

The expected number of heads is simply the expected value of indicator variable $X_{H}: E\left[X_{H}\right]=E[I\{H\}]=1 \cdot P\{H\}+0 \cdot P\{T\}=1 \cdot \frac{1}{2}+0 \cdot \frac{1}{2}=\frac{1}{2}$

- Lemma: Given a sample space S and an event A in sample space S. Let $X_{A}=I\{A\}$. Then $E\left[X_{A}\right]=P\{A\}$.
[Proof: By definition of indicator r.v. we get: $E\left[X_{A}\right]=E[I\{A\}]=1 \cdot P\{A\}+0 \cdot P\{\bar{A}\}=P\{A\}$, where $\bar{A} \in \Phi$ denotes event $S \backslash A$, the complement of A (the event "not A ")]

Indicator random variables

- Extended Expl: Be X_{i} - indicator r.v. to event in which the i-th flip comes up heads:
$X_{i}=I\{$ the i - th flip results in the event $H\}$. Let
X - r.v. denoting the total number of heads in case of n times to flip the coin $X=\sum_{i=1}^{n} X_{i}$

What is the expected number of heads?

$$
\begin{aligned}
& \left.E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]\right] \text { By linearity of expectation we get: } \\
& \left.E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} \frac{1}{2}=\frac{n}{2}
\end{aligned}
$$

The hiring problem

- Analysis of the hiring problem by indicator random variables
- Aim: computation of the expected number of times that we hire a new office assistant

Assumption: candidates arrive in a random order
Let X-r.v. to describe the number of times of hiring a new applicant $\Rightarrow E[X]=\sum_{x=1}^{n} x \cdot P\{X=x\}$.
Let X_{i} - Indicator r.v. with:

$$
\begin{aligned}
& X_{i}=I\{\text { candidate } i \text { is hired }\}=\left\{\begin{array}{lll}
1 & \text { if cand. } \mathrm{i} \text { is hired } \\
0 & \text { if cand. } \mathrm{i} \text { is not hired }
\end{array}\right. \\
& \Rightarrow \quad X=X_{1}+\cdots+X_{n}
\end{aligned}
$$

- By Lemma:
$\Rightarrow E\left[X_{i}\right]=P\{$ candidate i is hired $\}$, that means, we compute the probability, that lines 5-6 of Hire-Assistant algorithm (H-A) are executed
- Candidate i is hired in line 5: he is better than each of candidates $1 \cdots i-1$. All candidates arrive in random order \Rightarrow any one of these first i candidates is equally likely to be bestqualified so far
- Candidate i has probability $1 / i$ of being better than 1 through $i-1$ and thus probability of $1 / i$ of being hired
- By Lemma:
$E\left[X_{i}\right]=1 / i \quad \Rightarrow$
$E[X]=E\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} E\left[X_{i}\right]=\sum_{i=1}^{n} 1 / i=\ln n+O(1)$
- Resumè:
- Even though we interview n people, we only actually hire approximately $\ln n$ of them, on average \Rightarrow
- If candidates come in random order, algorithm Hire-Assistant has a total hiring cost of $O\left(c_{h} \cdot \ln n\right)$
(\Rightarrow The average-case hiring cost is a significant improvement over the worst-case hiring cost of $O\left(c_{h} \cdot n\right)$)

The hiring problem

- Randomized algorithms
- Case: No knowledge of the distribution on the inputs \Rightarrow average-case analysis is not possible, but randomized algorithms:
- Probability and randomnes as tools for algorithm itself by making the behavior of part of the algorithm random
- Regarding Hiring problem: independent on any input (-distribution) of applicants the randomized Hire-Assistant algorithm (r. H-A) impose a distribution of inputs as
- First action of algorithm: randomly permute the candidates to enforce the property, that every permutation is equally likely
- For this algorithm (and other randomized algorithm): no particular input elicits its worst-case behavior

The hiring problem

Randomized-hire-Assistant(n)

1 Randomly permute the list of candidates
2 best := 0 // \triangleright Candidate 0 is a leastqualified dummy candidate
3 for i:= 1 to \mathbf{n}
4 do interview candidate i
5 if candidate i is better than cand. best
6 then best := i
7 hire candidate i

The expected hiring cost of Randomized Hire-Assistant is $O\left(c_{h} \cdot \ln n\right)$

Probabilistic Analysis \& randomized algorithms

- Distinction between probabilistic analysis and randomized algorithms
- Probabilistic Analysis: probability distribution of the input data
- Mostly, probability analysis to analyze the running time of an algorithm:
- Averaging the running time over all possible inputs
- The algorithm itself is deterministic
- Speech: average-case running time
- Randomized algorithm: randomization in the algorithm, not in input
- no assumption about the input
- Running time: expectation of running time over the distribution of values produced by random-number generator (RANDOM)
- Speech: expected running time

The hiring problem

- Random-number generator RANDOM
- RANDOM(a,b) returns an integer between a and b
- Each integer with equal probability
- Example: RANDOM $(0,1)$ produces both 0 and 1 with probability $1 / 2$

RANDOM(3,7) returns $3,4,5,6$ or 7 with with probability $1 / 5$

- Each integer given by RANDOM is independent of integers returned on previous calls
- Imagine: RANDOM as rolling of a $(b-a+1)$-sided die to get its output
- In practice: most programming environments use a pseudorandomnumber generator: a deterministic algorithm returning numbers that "look" statistically random

Quick Sort

Pseudo code for Randomized Quick Sort

Randomized-Quicksort (A,p,r)

if $p<r$ then
$\mathrm{q}:=$ Randomized-Partition (A,p,r)
Randomized-Quicksort (A,p,q-1)
Randomized-Quicksort (A,q+1,r)

Randomized-Partition (A,p,r)
i := Random (p, r)
exchange $A[r] \longleftrightarrow A[i]$
return Partition (A, p,r)

- Now: Expected running time $\mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \cdot \lg \mathrm{n})$

Basics of Probability Theory

■ Goal

- recall the basic concepts of probability theory
- Contents
- Randomness and Probability
- Random Variables and their Distributions
- Moments and Quantiles
- Some Distributions
- Dependence of Random Variables

■ Why probability theory (and statistics) ?

- often random input in simulation application areas and analytical models
- manufacturing: processing times, machine failure/repair times,...
- communications: interarrival times of messages, packet sizes,...
- ...
- output analysis
- statistical methods for random simulation output

Why Probability Theory and Statistics ?

■ Characterization of single random quantities

- random variables
- probability distribution
- expectation, variance, quantiles, ...
- dependence on other random variables
- Simulation and analytical model
- often is a stochastic process
- allows mathematical characterization
- sometimes possible to analyze
- Statistical methods
- to find probability distributions and their parameters (input modeling)
- to generate random numbers/variates during simulation run (random number generation)
- to analyze simulation output (output analysis)

Randomness and Probabilities

- Probability theory
- concerned with the study of random phenomena
- not predictable in a deterministic fashion
- mathematical descriptions to deduce patterns of future outcomes
- Random experiments and their outcomes
- random experiment: a process whose outcome is not known with certainty (properties: reproducible with same possible outcomes)
- sample space: the set S of all possible outcomes of a random experiment
- sample point or elementary event: a possible single outcome of a random experiment, an element of S
- event: a set A of elementary events, a subset of S
- Examples
- toss of a die
- time to failure of a hard disk/machine

Randomness and Probabilities

■ Intuitive interpretations of probability

- $P(A)$ denotes the probability of an event A
- a measure of how likely a performance of the random experiment results in an elementary event in A
- relative-frequency interpretation
- repeat the experiment a large number of n times
- count the number m of occurrences of elementary events in A
- $P(A) \sim m / n$
- experience: the quotient fluctuates less for increasing n
- interpretation based on equiprobability of elementary events
- if S finite: $m=|A|, n=|S|$, then $P(A)=m / n$
- $|\cdot|$ denotes the cardinality of a set
- intuitive interpretations sufficient for most engineering applications
- some subtle mathematical difficulties lead to paradoxes with this interpretation
\Rightarrow alternative: axiomatic definition of probability

Randomness and Probabilities

- Axiomatic definition of probability
- by Kolmogorov 1933
- probabilities, i.e., real numbers, can be assigned to events so as to satisfy the three basic axioms of probability:

1. for any event $A: P(A) \geq 0$
2. $P(S)=1$ (the universal event has probability one)
3. $P(A \cup B)=P(A)+P(B)$, whenever A and B are disjoint,
i.e., when $A \cap B=\varnothing$
for infinite sample spaces and disjoint events:

$$
P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)
$$

- consistent with our intuition
- axioms of probability allow to derive a number of calculation rules (together with conventional set theory)
- to avoid mathematical difficulties: only those events can be considered, which are "measurable" in the sense of measure theory

Randomness and Probabilities (cont.)

- Probability systems (S, Ф, P)
- S sample space
- Φ is a Borel field of subsets of S
- $\Phi \subseteq 2^{S}$, where power set 2^{S} is the set of all subsets
- example: $S=\{x, y, z\}$

$$
2^{S}=\{\varnothing,\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}\}
$$

$\Phi=2^{\mathrm{S}}$ (in this example)

- P is a probability measure on Φ satisfying the three axioms of probability
- example: assume all events in S are equiprobable

$$
\begin{aligned}
& P: \Phi \rightarrow[0,1], \text { where } \\
& P(\varnothing)=0 \\
& P(\{x\})=P(\{y\})=P(\{z\})=1 / 3 \\
& P(\{x, y\})=P(\{x, z\})=P(\{y, z\})=2 / 3 \\
& P(\{x, y, z\})=1
\end{aligned}
$$

- we do not need to enter measure theory in more detail

Randomness and Probabilities

- Two rules
- $P(\varnothing)=0$ (impossible event)
- $P(\bar{A})=P(S \backslash A)=1-P(A)$ (complementary event)

- Conditional probability
- $P(A \mid B)=$ the probability of event A, given that event B has occurred
- important: $\mathrm{P}(\mathrm{B})>0$!
- if A occurs on the condition B, we have the additional information that the outcome of this random experiment is contained in subset B :

- intuitively: event B plays now the role of the sample space
- $P(A \mid B)=P(A \cap B) / P(B)$

Randomness and Probabilities

■ Independence

- two events A and B are independent if $P(A \mid B)=P(A)$

- intuitively: the relation of the areas of A and S is the same as the relation of the areas of $A \cap B$ and B

- an equivalent criterion: $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$

Random Variables and their Distributions

- From sample spaces to random variables
- need a more compact representation than the sample space and its elementary events
- random variable: a function $\mathrm{X}: \mathrm{S} \rightarrow \mathbb{R}^{+}{ }_{0}$, that assigns a real number $\mathrm{X}(\mathrm{s})$ to each possible elementary event or sample point $s \in S$
- the term "random variable" is thus misleading
- convention: capital letters for the random variable and lowercase letters for their values
- example: rolling a pair of dice
- $S=\{(1,1),(1,2), \ldots,(6,6)\}$
- (i, j) means that i appeared on the first and j on the second die
- $X((i, j))=i+j$
- example: time to failure of a hard disk
- $S=\mathbb{R}^{+}{ }_{0}$
- $X(s)=s$ (here X is just the identity)

Random Variables and their Distributions

■ Discrete and continuous random variables (RVs)

- the image of X is $X(S)$, the set of values the random variable can assume
- discrete RV: $|X(S)| \leq\left|\mathbb{N}_{0}\right|$
- the random variable assumes values from a discrete set of numbers, hence the image is either finite or countable
- example: rolling a pair of dice (finite image)
- continuous RV: $|\mathrm{X}(\mathrm{S})|>\left|\mathbb{N}_{0}\right|$
- the random variable assumes values from a continuous set of numbers, hence the image is uncountable
- example: time to failure of a hard disk
- mixtures of discrete and continuous RVs are possible

Random Variables and their Distributions

■ Distribution of a discrete RV

- let x_{1}, x_{2}, \ldots be the discrete values the RV can assume
- $p_{i}=P\left(X=x_{i}\right)$ is called the probability mass function (pmf)
- intuitive interpretation: the pmf describes how the probability mass is distributed over the different values of the RV
- example:
- $x_{1}=0, x_{2}=1, x_{3}=2$
- $p_{1}=0.1, p_{2}=0.6, p_{3}=0.3$

Random Variables and their Distributions

■ Distribution of a discrete RV (cont.)

- (cumulative) distribution function (CDF): $F(x)=P(X \leq x)=\sum_{x_{1} \leq x} p_{i}$
- $F(x)$ is a step function jumping with height p_{i} at the discrete values x_{i} of the RV
- it contains the same information as the pmf
- in the example:

Random Variables and their Distributions

- A distribution function $F(x)$ has the following properties

1) $0 \leq F(x) \leq 1$
2) $F(x)$ is non-decreasing: if $x_{1} \leq x_{2}$ then $F\left(x_{1}\right) \leq F\left(x_{2}\right)$
3) $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow+\infty} F(x)=1$
4) $F(x)$ is continuous from the right

- any function satisfying these properties is a distribution function

Random Variables and their Distributions

■ Distribution of a continuous RV

- the probability distribution $F(x)=P(X \leq x)$ is defined as before
- the probability density function (pdf) is defined as its derivation:

$$
f(x)=\frac{d}{d x} F(x)
$$

- intuitive interpretation: the pdf describes how the probability is distributed over the different values of the RV
- example: the uniform distribution from a to b :

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{b-a} & a<x \leq b \\
0 & \text { otherwise }\end{cases} \\
& F(x)= \begin{cases}0 & x<a \\
\frac{x-a}{b-a} & a<x \leq b \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Random Variables and their Distributions

■ Distribution of a continuous RV (cont.)

- integration of a pdf yields a CDF: $F(x)=\int_{-\infty}^{x} f(y) d y$
- probability $\mathrm{P}(\mathrm{c}<\mathrm{X} \leq \mathrm{d})$ of an interval ($\mathrm{c}, \mathrm{d}]$:

$$
\int_{c}^{d} f(y) d y=F(d)-F(c)
$$

- example:

- probability $P(X=a)$ of a single value:

$$
\int_{a}^{a} f(y) d y=F(a)-F(a)=0
$$

- areas under $\mathrm{f}(\mathrm{x})$ are probabilities
- $f(x)$ is not a probability!

Random Variables and their Distributions

■ Distribution of a continuous RV (cont.)

- only the area under the $f(x)$ in the neighborhood $[x, x+d x]$ is a probability

- thus x is more likely in neighborhoods where $f(x)$ is large

Moments and Quantiles

■ Need for a concise description

- the CDF $F(x)$ or the $p d f f(x)$ (pmf p_{i} in the discrete case) completely characterizes the behavior of a RV
- a function is often too complex
- we need a simpler description: a single number or a few numbers
- Expectation
- the expectation (or mean) $\mu=\mathrm{E}[\mathrm{X}]$ of a RV X is defined as

$$
E[X]= \begin{cases}\sum_{i=1}^{\infty} x_{i} p_{i} & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} x f(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

provided the sum or integral converges absolutely (otherwise the expectation does not exist)

Moments and Quantiles

■ Expectation (cont.)

- intuitive interpretation: a measure of central tendency in the sense that it is the center of gravity
- example (discrete case)
- $x_{1}=0, x_{2}=1, x_{3}=2$
- $\mathrm{p}_{1}=0.1, \mathrm{p}_{2}=0.6, \mathrm{p}_{3}=0.3$
$-E[X]=0 \cdot 0.1+1 \cdot 0.6+2 \cdot 0.3=1.2$
- example (continuous case)
- uniform distribution from a to b
$-E[X]=\int_{a}^{b} \frac{x}{b-a} d x=\left.\frac{x^{2}}{2(b-a)}\right|_{a} ^{b}=\frac{a+b}{2}$

Moments and Quantiles

\square Expectation (cont.)

- two properties of the expectation operator, needed for other derivations:
- linearity of the expectation: $\mathrm{E}[\mathrm{aX}+\mathrm{bY}]=\mathrm{aE}[\mathrm{X}]+\mathrm{bE}[\mathrm{Y}]$
- function of a RV: let $Y=g(X)$, then

$$
E[Y]=E[g(X)]= \begin{cases}\sum_{i=1}^{\infty} g\left(x_{i}\right) p_{x}(i) & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} g(x) f_{X}(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

(where $p_{x}(i) / f_{x}(x)$ are the pmf / density of RV X)

- what about $\mathrm{E}[\mathrm{X} \cdot \mathrm{Y}]$?

$$
E[X \cdot Y]=E[X] \cdot E[Y] \text {, only if } X \text { and } Y \text { are independent }
$$ (for independence of RVs see slide 33)

Moments and Quantiles

■ Variance

- the variance $\sigma^{2}=\operatorname{Var}[\mathrm{X}]$ of a $\mathrm{RV} X$ is defined as $\operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(X-E[X])^{2}\right]$, provided it exists
- the expectation of the square of the deviation from the mean or the "second central moment"
- intuitive interpretation: a measure of the dispersion of a RV about its mean; the larger the variance, the more likely the RV is to take on values far from its mean
- σ is known as the standard deviation
- $C_{X}=\sigma / E[X]$ is the coefficient of variation, a normalized measure

Moments and Quantiles

- Variance (cont.)
- with the linearity of the expectation we can derive

$$
\begin{aligned}
& \operatorname{Var}[\mathrm{X}]=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}\right]=\mathrm{E}\left[\mathrm{X}^{2}-2 \mathrm{XE}[\mathrm{X}]+\mathrm{E}[\mathrm{X}]^{2}\right]=\mathrm{E}\left[\mathrm{X}^{2}\right]-2 \mathrm{E}[\mathrm{X}]^{2}+\mathrm{E}[\mathrm{X}]^{2} \\
& \quad=\mathrm{E}\left[\mathrm{X}^{2}\right]-\mathrm{E}[\mathrm{X}]^{2}
\end{aligned}
$$

- in the discrete example:

$$
\operatorname{Var}[X]=0^{2} \cdot 0.1+1^{2} \cdot 0.6+2^{2} \cdot 0.3-1.2^{2}=0.36
$$

- in the uniform example:

$$
\operatorname{Var}[X]=\int_{a}^{b} \frac{x^{2}}{b-a} d x-\left(\frac{a+b}{2}\right)^{2}=\cdots=\frac{(b-a)^{2}}{12}
$$

- properties of the variance:
$-\operatorname{Var}[\mathrm{aX}]=\mathrm{a}^{2} \operatorname{Var}[\mathrm{X}]$
- $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]$, if X and Y are uncorrelated (for uncorrelated RVs see slide 34)

Moments and Quantiles

■ Moments

- n'th moment is $E\left[X^{n}\right], n \geq 1$
- n'th central moment is $E\left[(X-E[X])^{n}\right]$
- first moment is the expectation
- second central moment is the variance
- third central moment allows to define the skewness : $v=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{3}\right] / \sigma^{3}$ a measure of symmetry
- $v=0$ for symmetric distributions as the normal or uniform
- $v<0$: skewed to the left; $v>0$: skewed to the right
- fourth central moment allows to define kurtosis :

$$
\eta=E\left[(X-E[X])^{4}\right] / \sigma^{4}
$$

a measure of the tail weight

- $\eta=3$ for normal distribution
- $\eta<3$: platykurtic; $\eta>3$: leptokurtic (more peaked in center, fatter tails)
- hard to find interpretations for the higher moments (with larger n)
- a distribution can also be represented by the sequence of its moments (if they exist)

Moments and Quantiles

- Median

- the median is the smallest value $x_{0.5}$ such that $F\left(x_{0.5}\right) \geq 0.5$
- an alternative measure of central tendency
- may be better when X can assume extreme values, since they can greatly affect the mean even if they are unlikely to occur

Moments and Quantiles

■ Quantile

- for $0<q<1$, the q-quantile is the smallest value x_{q} such that $\mathrm{F}\left(\mathrm{x}_{\mathrm{q}}\right) \geq \mathrm{q}$
- median for $q=0.5$: median is 0.5 -quantile
- quartiles for $q=0.25$ or $q=0.75$
- octiles for $q=0.125$ or $q=0.875$
- when X is continuous and $F(x)$ is strictly increasing for $0<F(x)<1$:
$F\left(x_{q}\right)=q, x_{q}=F^{-1}(q)$
- quantiles also called fractiles or percentiles
- quantiles are not probabilities! (found on x -axis)
- for distribution of discrete RV: the quantile must also be one of the discrete values x_{1}, x_{2}, \ldots that the RV can assume

Some Distributions

■ Geometric distribution

- Bernoulli trial
- a random experiment with two possible outcomes: success or failure
- the probability of success is p
- example: tossing a die success: obtaining a six, failure: the other numbers $\rightarrow p=1 / 6$
- new experiment: repeat Bernoulli trials until the first success
- discrete RV X: the number of trials
- pmf: $p_{i}=(1-p)^{i-1} p, i=1,2, \ldots$
- CDF: $F(i)=\Sigma_{j=1}^{i} p_{j}=\Sigma_{j=1}^{i}(1-p)^{j-1} p=\ldots=1-(1-p)^{i}$
- expectation and variance:
- $E[X]=\Sigma_{j=1} j_{j}=p \Sigma_{j=1} j(1-p)^{j-1}=\ldots=1 / p$
$-\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=\ldots=(1-p) / p^{2}$

Some Distributions

- Exponential distribution
- pdf: $f(x)=\left\{\begin{array}{ll}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{array} \quad\right.$ CDF: $F(x)= \begin{cases}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}$

- one parameter: the rate λ
- expectation: $E[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\cdots=1 / \lambda$
- variance:

$$
\operatorname{Var}[\mathrm{X}]=\int_{0}^{\infty}(x-1 / \lambda)^{2} \lambda \mathrm{e}^{-\lambda x} d x=\cdots=1 / \lambda^{2}
$$

Some Distributions

\square The exponential distribution is memoryless

- the memoryless property: $\mathrm{P}(\mathrm{X} \leq \mathrm{y}+\mathrm{z} \mid \mathrm{X}>\mathrm{y})=\mathrm{P}(\mathrm{X} \leq \mathrm{z})$
- interpretation
- let X be the time to failure of a system
- given the system has not failed until time y, the probability that the system fails in the coming z time units, i.e., until time $y+z$, is the same as
the probability that the system fails until time z starting at time 0 (thus, the memory y plays no role)
- proof for the exponential distribution:

$$
\begin{gathered}
\text { def. of conditional probability } \\
P(X \leq y+z \mid X>y)=\frac{\downarrow(y<X \leq y+z)}{P(X>y)}=\frac{F(y+z)-F(y)}{1-F(y)} \\
=\frac{1-e^{-\lambda(y+z)}-\left(1-e^{-\lambda y}\right)}{e^{-\lambda y}}=1-e^{-\lambda z}=P(X \leq z)
\end{gathered}
$$

Some Distributions (cont.)

■ Illustration of the memoryless property

- the curve of the exponential distribution function starting at zero with the corresponding values at y and $y+z$:

Some Distributions

■ Illustration of the memoryless property (cont.)

- given that $X>y$, subtract $1-e^{-\lambda y}$ and divide by $e^{-\lambda y}$, the result is the same curve shifted to the right by y :

Some Distributions

■ Illustration of the memoryless property (cont.)

- equivalently, scaling the density with the factor $e^{-\lambda y}$ for all values equal to or greater than y leads to the same curve shifted to the right by y :

Some Distributions

■ The exponential distribution is memoryless (cont.)

- it can be shown that the exponential distribution is the only continuous distribution which is memoryless
- analogously, the geometric distribution is the only discrete distribution which is memoryless
- memoryless property (of exponential distribution) accounts for high tractability in analysis
- Markovian systems are built from exponential phases:
- phase-type distributions (dense class of probability distributions)
- Markovian arrival processes (with correlated interarrival times)
- Continuous-Time Markov Chains (CTMC)
- Markovian queues
(more details in Chapter Analytical Modeling)

Some Distributions

$■$ Normal distribution

- pdf: $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$

- $\mathrm{Z} \sim N(0,1)$, the standard normal distribution is recorded in tables
- relation: $F_{X}(x)=F_{Z}\left(\frac{x-\mu}{\sigma}\right)$
- $\mathrm{P}(|\mathrm{x}-\mu|<\sigma)=0.683, \mathrm{P}(|\mathrm{x}-\mu|<2 \sigma)=0.955, \mathrm{P}(|\mathrm{x}-\mu|<3 \sigma)=0.997$
- common for describing measurement errors
- common for quantities that are the sum of a large number of other quantities, therefore it plays a central role in statistics (central limit theorem)

Dependence of Random Variables

■ Joint distribution functions

- Let X and Y be two RVs
- $F(x, y)=P(X \leq x, Y \leq y)$ is the joint distribution function
- marginal distribution functions:

$$
\lim _{x \rightarrow \infty} F(x, y)=F_{Y}(y), \quad \lim _{y \rightarrow \infty} F(x, y)=F_{X}(x)
$$

- X and Y are independent if $F(x, y)=F_{X}(x) F_{Y}(y)$ for all x, y
- analogous definitions of independence can be given based on the pmf (in the discrete case) or the pdf (in the continuous case):

$$
p(x, y)=p_{x}(x) p_{Y}(y), f(x, y)=f_{X}(x) f_{Y}(y)
$$

Relationship between Random Variables

- Measures of dependence between two RVs X_{i} and X_{j}
- covariance $C_{i j}=E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]=E\left[X_{i} X_{j}\right]-\mu_{i} \mu_{j}$
- if X_{i} and X_{j} are independent, $C_{i j}=0$, the converse is not true in general
- if $C_{i j}>0, X_{i}$ and X_{j} are positively correlated $\left(X_{i}>\mu_{i}\right.$ and $X_{j}>\mu_{j}$ tend to occur together and $X_{i}<\mu_{i}$ and $X_{j}<\mu_{j}$ tend to occur together)
- if $\mathrm{C}_{\mathrm{ij}}<0, X_{i}$ and X_{j} are negatively correlated $\left(X_{i}>\mu_{i}\right.$ and $X_{j}<\mu_{j}$ tend to occur together and $X_{i}<\mu_{i}$ and $X_{j}>\mu_{j}$ tend to occur together)
- the covariance is not dimensionless, difficult to use, especially for
- correlation $\rho_{i j}=\frac{C_{i j}}{\sqrt{\sigma_{i}^{2} \sigma_{j}^{2}}}$
comparing degree of dependency
- normalized to values $-1 \leq \rho_{\mathrm{ij}} \leq 1$
$-\rho_{\mathrm{ij}}=0$ (then also $\mathrm{C}_{\mathrm{ij}}=0$) $\Rightarrow \mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}$ uncorrelated (but not necessarily independent)
$-\rho_{\mathrm{ij}}= \pm 1 \Rightarrow X_{i}, X_{j}$ linearly dependent

$$
\text { (i.e., } X_{j}=a X_{i}+b \text { with } a>0 \text { or } a<0 \text {, respectively) }
$$

